
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

In the realm of technology and IT service agreements, poorly 
defined obligations, ambiguous acceptance criteria and 
uncontrolled scope expansion can turn promising projects into 
costly disputes. The recent Court of Appeal decision in Skyworld 
Holdings Sdn. Bhd. v Neurogine Sdn. Bhd. [B-02(NCC)(W)-1312-
08/2023] offers a cautionary case study on the structural 
weaknesses that frequently undermine such contracts. 
 

The Dispute 
 
In Skyworld, the Court of Appeal upheld the High Court’s ruling in 
a dispute arising from a contract to develop a mobile application 
ecosystem. Skyworld, the appellant, had engaged Neurogine to 
design and deliver the "Sky App", which was to be delivered in two 
phases: a chat module (Phase One) and an e-wallet with a 
payment gateway (Phase Two), all hosted on a cloud-based 
platform. 
 
Skyworld alleged that the application, upon delivery for testing, 
was non-functional and failed to meet agreed specifications. On 
this basis, it sought a full refund of RM1.66 million, claiming a total 
failure of consideration. 
 
Neurogine denied the allegations, arguing that Phase One had 
been completed, tested, and published to app stores, with only 
minor bugs outstanding. It contended that delays in Phase Two 
were caused by Skyworld’s own conduct, specifically, the refusal 
to make further payments and the revocation of developer access. 
Neurogine also pointed to change requests initiated by Skyworld, 
which had been separately quoted and partially paid. On that 
basis, Neurogine counterclaimed for RM 1.6 million in unpaid fees. 
 

 
 
 
                                                                                            



The High Court’s Findings 
 
The High Court examined the contractual documents and technical evidence in detail. A key 
witness for Skyworld conceded under cross-examination that the quotation did not require 
delivery of the source code, nor did it specify a strict project timeline. The timeline that 
existed was internal and subject to change. 
 
Evidence presented by Neurogine showed that Phase One had undergone two rounds of 
User Acceptance Testing (UAT) and two Factory Acceptance Tests (FAT), all of which 
were signed off by Skyworld’s technical advisor. The application had been published on 
both the Google Play and Apple App stores with only minor defects identified. Skyworld 
ultimately acknowledged that the functionality of Phase One substantially met the contract 
specifications. 
 
Regarding Phase Two, the court accepted that development had stalled due to Skyworld’s 
revocation of access and non-payment, rather than any breach by Neurogine. It further 
found that additional features requested by Skyworld had led to a second quotation, for 
which part-payment was made. No objections were raised to the accompanying invoices, 
which contained a clause stipulating “deemed acceptance” after 15 days. 
 
Skyworld’s claim based on “total failure of consideration” failed on both procedural and 
substantive grounds as it had not been properly pleaded and was inconsistent with the 
evidence that Phase One had been delivered. Accordingly, the court dismissed Skyworld’s 
claim and allowed Neurogine’s counterclaim. 
 

The Court Of Appeal’s Position 
 
The Court of Appeal affirmed the High Court’s decision, finding no basis for appellate 
intervention in the trial judge’s factual and legal findings. Skyworld’s appeal was dismissed. 
 

Lessons For Technology Contracts 
 
The Skyworld decision illustrates recurring vulnerabilities in technology-related contracts. 
These shortcomings are not novel, yet they continue to frustrate delivery and fuel disputes. 
Several key lessons emerge. 
 
1. The Risk Of Vague Scope Definitions 
 

Technology contracts often borrow from the language of general service 
agreements, an approach ill-suited to the technical complexity of IT delivery. 
Projects involving APIs, data flows, third-party integration, and cybersecurity require 
a clearly delineated scope. General descriptions (e.g. “develop an app that performs 
X”) are rarely sufficient. 
 
Disputes often arise over hidden expectations about what “integration” or 
“completion” entails. To mitigate this, contracts should include a detailed Statement 
of Work (SoW) that defines both inclusions and exclusions. A contract-first API 
design approach where the API interface is specified before development begins 
can also help align expectations and reduce scope-related conflicts. 
 
 
 
 
 
 



2. Fuzzy Acceptance Criteria Undermine Accountability 
 

Ambiguously worded acceptance clauses such as “system must be functional” leave 
both parties exposed. Suppliers may press for premature sign-off; buyers lose 
leverage to demand necessary fixes. 
 
Acceptance testing should be multi-layered and tied to objective metrics. For 
example, the contract should distinguish between integration testing (to verify 
module interoperability), user acceptance testing (to confirm real-world usability), 
and operational testing (to assess performance under load). Each phase should 
have defined criteria and allow for rejection or retesting in the event of defects 
including latent defects discovered post-deployment. 

 
3. Uncontrolled Scope Creep Is A Silent Liability 
 

Scope creep is almost inevitable in technology projects. Regulatory shifts, evolving user 
demands, and commercial pressures often necessitate changes midstream. The key is 
not to prevent scope creep, but to manage it effectively. 
 
A robust change control process comprising formal change requests, documented 
impact assessments, and written approvals turns scope creep from a hidden risk into a 
manageable adjustment. Properly structured, this process ensures that both cost and 
timeline adjustments are transparent and agreed, preserving the commercial balance 
and reducing the risk of post-hoc disputes. 
 

Conclusion 
 
The failure of the Sky App project underscores a broader truth: technology contracts are often 
under-engineered for the complexities they govern. Clarity on scope, precision in acceptance, 
and discipline in managing change are not just best practices. Instead, they are essential 
safeguards. As the technology sector continues to mature, so too must the contractual 
frameworks that underpin it. 

 
 
 
 

 

 
 
 
 

 

 

 

 

 

 

 

 

  

 


